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Abstract
Adsorption at a one-dimensional planar substrate equipped with a localized
chemical inhomogeneity is studied within the framework of a continuum
interfacial model from the point of view of interfacial morphology and
correlation function properties. Exact expressions for the one-point and two-
point probability distribution functions P�(l�) and P�1,�2

(
l�1 , l�2

)
, l� being

the interface position above a fixed point � of the substrate, are derived for
temperature corresponding to the inhomogeneity’s wetting transition. It is
demonstrated that in the limit of macroscopic inhomogeneity’s size the net
effect of the remaining homogeneous parts of the substrate on the interfacial
morphology above the inhomogeneity is exactly equivalent to appropriate
pinning of the interface at its boundaries. The structure of the average interfacial
morphology and correlation function in this limit are discussed and compared
to earlier results obtained for systems with homogeneous substrate.

PACS numbers: 68.15.+e, 68.08.Bc

1. Introduction

Adsorption phenomena taking place at chemically patterned and geometrically sculptured
substrates have been a topic of growing interest in recent years [1–8]. Theoretical research in
this field has been stimulated on one side by the rapid development of experimental methods
of imprinting solid substrates with structures of sizes reaching the nanometre scale [9–12],
and on the other by attractive future applications, e.g. in the context of micro- and nanofluidics
or nanotubes [13, 14].

From the theoretical point of view the interfacial morphologies and surface phase
transitions at inhomogeneous substrates are most often studied via methods based on mean-
field approach which correctly describe the system’s behaviour provided intermolecular forces
are long-ranged or the system’s dimensionality is large enough. On the other hand, fluctuations
often modify the system’s properties, which is best seen in the context of 3d wetting with short-
ranged forces [15] or filling transitions in wedge-like geometries [2]. Additional interesting
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Figure 1. A planar substrate equipped with a chemical inhomogeneity is exposed to fluid at bulk
liquid–vapour co-existence. A layer of a liquid-like phase is adsorbed near the substrate. The
interface at y = l(x) separates the adsorbed liquid-like layer from the gas phase which is stable in
the bulk. Type 1 substrate is wetted by the liquid, while substrate type 2 remains non-wet.

features emerge in the case of two-dimensional systems with chemically structured substrates,
where interfacial fluctuations were shown to generate divergences in thermodynamic functions,
in particular—the point tensions (see [16, 17]). Exact results dealing with the case of
inhomogeneous substrates are still rare though (see [16, 18, 19]).

In this paper we are concerned with fluctuation effects accompanying adsorption at a
one-dimensional planar substrate equipped with a single chemical impurity of width 2L. The
system under study consists of a two-dimensional fluid in a thermodynamic state infinitesimally
close to bulk liquid–vapour co-existence and exposed to the aforementioned substrate, see
figure 1. The chemical structure imposes non-uniformity of the adsorbed liquid-like layer,
whose morphology and fluctuations are investigated theoretically in the present paper.

The system’s temperature is fixed at T = TW1, the critical wetting temperature of
homogeneous substrate type 1, of which the chemical heterogeneity is composed, see figure 1.
The rest of the substrate, which is referred to as type 2, remains non-wetted by the liquid;
the corresponding wetting temperature TW2 is above TW1. The behaviour of the system in
the limit of macroscopic inhomogeneity width 2L → ∞ is of our main interest here, since it
corresponds to a typical experimental setup in which the heterogeneity’s size is much larger
than all correlation lengths present in the system. One also notes that the fluctuations’ influence
on the system is most pronounced in this limit. On phenomenological grounds, confirmed by
earlier theoretical predictions [18, 20] one may expect that the mean position of the interface
above the inhomogeneity centre, i.e. at x = 0, as well as interfacial roughness and a parallel
interfacial correlation length diverge for L → ∞. On the other hand, as was demonstrated in
[17], these quantities remain bounded above the chemical impurity’s boundaries at x = ±L. It
is then natural to ask about the behaviour of the characteristic local lengths in the intermediate
region |x| ∈ (0, L), i.e., how strongly the fluctuations are suppressed by the non-wet parts of
the substrate depending on the distance from the heterogeneity’s boundary.

Our approach is based on a continuum interfacial model and allows for exact derivation of
the equilibrium probability distribution function P�(l�) of finding the non-uniform two-phase
interface at the height l� above a fixed point x = � located at the inhomogeneity, as well as
the two-point distribution function P�1,�2

(
l�1 , l�2

)
.

The outline of this paper is as follows. In section 2 we formulate the SOS model for
the system under study and describe the methods we use to obtain our results. In section 3
we derive and discuss the one-point probability distribution function P�(l�) as well as the
two-point probability distribution function P�1,�2(l�1 , l�2). Section 4 contains the calculation
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of the average interfacial shape 〈l�〉 as well as interfacial roughness
〈
l2
�

〉
corresponding to

the limit of macroscopic domain width. In section 5 the two-point probability distribution
function is utilized in order to obtain an expression for the interfacial correlation function,
which depends on the two coordinates �1, �2. In section 6 the results are summarized and
compared to earlier predictions.

2. The SOS model

The present study is based on a continuum interfacial SOS-type Hamiltonian model, within
which one characterizes the system’s state by a single-valued, non-negative function l(x)

describing the position of the interface above the substrate at location x. As was demonstrated
in [21] for the homogeneous substrate case, close to wetting temperature this approach captures
all the system’s properties relevant at length scales much larger than bulk correlation lengths,
inter alia, it predicts the same set of surface critical indices as those obtained within the 2D
Ising model [22].

For the case of bulk fluid infinitesimally close to liquid–vapour co-existence, i.e. for
µ = µ−

0 , µ0 being the chemical potential at co-existence, the SOS Hamiltonian has the
following structure:

H[l] =
∫ X

−X

dx

[
σ

2

(
dl

dx

)2

+ V (x, l)

]
, (2.1)

where σ is the interfacial stiffness parameter and V (x, l) denotes the interfacial potential
energy favouring the interface located near the substrate. In the present analysis, V (x, l) is
taken as

V (x, l) = �(L − |x|)V1(l) + �(|x| − L)V2(l), (2.2)

where �(x) is the Heaviside function. In the case of periodic boundary conditions l(−X) =
l(X), the system’s partition function represented by the path integral Z(X,L) = ∫

Dl e−H[l]

[17, 21] can be expressed as

Z(X,L) =
∫

dl− dl1 dl2Z2(l1, l−, X − L)Z1(l2, l1, 2L)Z2(l−, l2, X − L), (2.3)

where l− = l(±X), l1 = l(−L) and l2 = l(L) are positions of the interface at
the inhomogeneity boundaries. The expression for the partition function Zi(y1, y2, λ)

corresponding to a homogeneous substrate of type i = 1, 2, of length λ and with interface
endpoints fixed at the boundaries at the heights y1, y2, respectively, was derived by Burkhardt
(see [21]) for the case in which the potential Vi(l) acts only at very short distances. In this
paper we are concerned exclusively with this case. The partition function Z(X,L) given
by (2.3) was evaluated for arbitrary temperatures in [17], where it was then used to discuss
the excess point free energy as a function of temperature and the width L. The probability
distribution functions and their moments, which can be obtained within this model for the
special case T = TW1, have not been discussed so far.

3. Probability distribution functions

3.1. One-point probability distribution function

The one-point probability distribution function of finding the interface at the height l� above
a point � of the substrate is given by

P�(l�) = 〈δ(l(x = �) − l�)〉, (3.1)
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where 〈· · ·〉 denotes averaging with the Boltzmann weight e−H [l], with H [l] given by
equation (2.1); the factor (kBT )−1 is included into the Hamiltonian. For � ∈ ] − L,L[,
the above formula can be rewritten as

P�(l�) = 1

Z(X,L)

∫
dl−

∫
dl1

∫
dl2 Z2(l1, l−, X − L)

×Z1(l�, l1, L + �)Z1(l2, l�, L − �)Z2(l−, l2, X − L). (3.2)

The partition functions Zi(y1, y2, λ) in equation (3.2) have the following spectral
representations in terms of orthonormal sets of solutions

{
ψ(i)

n

}
to the corresponding

Schrödinger equations with eigenvalues E(i)
n (see [21]):

Zi(y1, y2, λ) =
∑

n

ψ(i)
n (y1)ψ

(i)∗
n (y2) e−E

(i)
n λ. (3.3)

For temperatures below TW2 the spectrum
{
E(2)

n

}
corresponding to type 2 substrate contains

a negative lowest eigenvalue E
(2)
0 . It follows, that replacing Z2(l1, l−, X − L) and Z2(l−, l2,

X − L) in equation (3.2) by ψ
(2)
0 (l1)ψ

(2)∗
0 (l−) e−E

(2)
0 (X−L) and ψ

(2)
0 (l−)ψ

(2)∗
0 (l2) e−E

(2)
0 (X−L),

respectively, is equivalent to neglecting terms of the order eE
(2)
0 (X−L), which vanish in the limit

of infinite substrate size X → ∞. Bearing this in mind one can straightforwardly perform the
integration over l− in equation (3.2) to obtain

P�(l�) =
∫

dl1
∫

dl2 ψ
(2)
0 (l1)ψ

(2)∗
0 (l2)Z1(l�, l1, L + �)Z1(l2, l�, L − �)∫

dl1
∫

dl2ψ
(2)
0 (l1)ψ

(2)∗
0 (l2)Z1(l2, l1, 2L)

, (3.4)

where the limit X → ∞ has been taken. The remaining integrals can be performed after
inserting the specific forms of ψ

(2)
0 and Z1 corresponding to T = TW1 (see [21]), namely

ψ
(2)
0 (y) =

√
−2τ2 eτ2y, (3.5)

Z1(y1, y2, λ) =
√

σ

2πλ

[
e−σ(y2−y1)

2/2λ + e−σ(y1+y2)
2/2λ
]
, (3.6)

where τ2 = −√
2σ/ξ2 ∼ (T −TW2). It is convenient to introduce the following dimensionless

variables: λ0 = √
2L/ξ2, λ+ = √

(L + �)/ξ2, λ− = √
(L − �)/ξ2, y = l�/(2ξ2⊥), where ξ2

and ξ2⊥ are the parallel and perpendicular correlation lengths describing interfacial fluctuations
above infinite and uniform substrate of type 2. The quantities ξ2, ξ2⊥ can be expressed in terms
of the stiffness parameter σ and the eigenvalue E

(2)
0 [21], and both diverge as T approaches

TW2, which is accompanied by the eigenvalue E
(2)
0 increasing to zero. In terms of the above

dimensionless parameters the probability distribution function P�(l�) takes the following
form:

P�(y) = eλ2
0

[
eλ2

0 Erfc(λ0) +
2√
π

λ0 − 2λ2
0 eλ2

0 Erfc(λ0)
]−1

×
{

Erfc
(
− y

λ+
+ λ+

)[
e−4y Erfc

(
− y

λ−
+ λ−

)
+ Erfc

( y

λ−
+ λ−

)]

+ Erfc
( y

λ+
+ λ+

)[
e4y Erfc

( y

λ−
+ λ−

)
+ Erfc

(
− y

λ−
+ λ−

)]}
, (3.7)

where Erfc(x) stands for the complementary error function

Erfc(x) = 1 − Erf(x) = 2√
π

∫ ∞

x

e−t2
dt. (3.8)
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Figure 2. The probability distribution function P�(y) plotted for L/ξ2 = 100 and for two
particular choices of �. The solid curve corresponds to the inhomogeneity centre � = 0, while
the dashed one to the close vicinity of the inhomogeneity’s boundary �/L = 0.99. Approaching
� = 0 is accompanied by flattening the distribution function’s profile, which indicates growth of
the interfacial fluctuations’ magnitude.

The probability distribution function P�(l�) is a decreasing function of l� at any point �, see
figure 2. Asymptotically, this decay is of exponential type with a characteristic decay length
set by ξ2⊥.

3.2. Two-point probability distribution function

The two-point probability distribution function P�1,�2

(
l�1 , l�2

)
of finding the interface at points(

�1, l�1

)
and

(
�2, l�2

)
in the (x, y) plane

P�1,�2

(
l�1 , l�2

) = 〈
δ
(
l(x = �1) − l�1

)
δ
(
l(x = �2) − l�2

)〉
(3.9)

with �i ∈ (−L,L) can be written in the form

P�1,�2

(
l�1 , l�2

)
=
∫

dl1
∫

dl2 ψ
(2)
0 (l1)ψ

(2)∗
0 (l2)Z1(l�1, l1, L + �1)Z1(l�2 , l�1 , �2 − �1)Z1(l2, l�2 , L − �2)∫

dl1
∫

dl2ψ
(2)
0 (l1)ψ

(2)∗
0 (l2)Z1(l2, l1, 2L)

,

(3.10)

where we assumed �2 > �1 and passed to the limit X → ∞. After inserting the specific form
of Z1 corresponding to T = TW1, equation (3.6), into the above integrals one obtains

P�1,�2(y1, y2) =
[
eλ2

0 Erfc(λ0) +
2√
π

λ0 − 2λ2
0 eλ2

0 Erfc(λ0)
]−1 1√

π
�̃

× eλ2
1++λ2

2−

(
Erfc

(
− y1

λ1+
+ λ1+

)
e−2y1 + Erfc

( y1

λ1+
+ λ1+

)
e2y1

)

×
(

Erfc
(
− y2

λ2−
+ λ2−

)
e−2y2 + Erfc

( y2

λ2−
+ λ2−

)
e2y2

)(
e− (y2−y1)2


�̃ + e− (y2+y1)2


�̃

)
,

(3.11)

where λ1+ = √
(L + �1)/ξ2, λ2− = √

(L − �2)/ξ2, y1 = l�1/(2ξ2⊥), y2 = l�2/(2ξ2⊥),
�̃ =
(�2 − �1)/ξ2. Plots of P�1,�2(y1, y2) for particular choices of system parameters are provided
in figures 3 and 4.

In the next step, we shall concentrate on deriving the moments 〈y〉 and 〈y2〉 of the
probability distribution function P�(y) as well as the moment 〈y1y2〉 of P�1,�2(y1, y2) in the
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Figure 3. The probability distribution function P�1,�2 (y1, y2) plotted for L/ξ2 = 100, �1/L =
0.1, �2/L = 0.2.
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Figure 4. Contour plots of P�1,�2 (y1, y2) for (a): L/ξ2 = 100, �1/L = 0.1, �2/L = 0.2;
(b): L/ξ2 = 100, �1/L = 0.85, �2/L = 0.95.

asymptotic regime L/ξ2 
 1 and (L − �)/ξ2 
 1. For this purpose, we first note that the
arguments of the error functions in P�(y) and P�1,�2(y1, y2) are of the order

√
L/ξ2 (i.e., very

large compared to 1) at any fixed y (or y1, y2 in the case of P�1,�2(y1, y2)). On the other hand,
for those values of y, y1, y2 for which the error functions’ arguments become of the order
unity, P� and P�1,�2 are of the order ∼e−L/ξ2⊥ , see equations (3.7), (3.11). It follows that the
contributions to the integrals determining the aforementioned moments that are relevant in the
large L regime come only from those values of y, y1, y2, for which the arguments of the error
functions are large. One may therefore utilize the asymptotic expansion of Erfc(x) around
infinity in order to compute the quantities of interest.

4. Mean interfacial shape and roughness

The mean equilibrium interfacial shape 〈l�〉 is given by the first moment of the probability
distribution function, equation (3.7), which we evaluate in the regime of macroscopic droplet
size, i.e., for L/ξ2 
 1 and for (L − �)/ξ2 
 1 by substituting Erfc(±y/λ± + λ±) with

1√
πλ±

e−(±y/λ±+λ±)2
. It follows that 〈l�〉 fulfils the following relation:

〈l�〉√
L

−→ 1√
πσ

√
1 − �2

L2
, (4.1)

for L/ξ2 → ∞. The above expression corresponds to the upper root of an ellipse, whose

long axis of length L is oriented along the substrate, and the short axis’ length equals
√

L
σπ

.
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Note that the above asymptotic interfacial shape does not depend on τ2. We may now
compare 〈l�〉 in equation (4.1) to the droplet shape calculated for a system consisting of an
interface fluctuating in the presence of a homogeneous one-dimensional substrate in the case
where the interfacial endpoints are pinned (see [21]). These shapes appear exactly the same,
which means that the net influence the substrate at x ∈ ]−∞,−L[ and x ∈ ]L,∞[ exerts on the
interfacial morphology above the chemical impurity is equivalent to pinning the interface at the
inhomogeneity boundaries close to the substrate. This conclusion refers to the macroscopic
limit L → ∞. One also notes that the scaling interfacial shape in the form of an ellipse
was obtained for the case of long-ranged van der Waals-type interactions via the mean field
approximation, see [23]. From equation (4.1) one finds the droplet height 〈l0〉 divergent as

√
L

in the considered limit of large L. This may be compared to mean-field results [18, 20] which
predict logarithmic divergence of 〈l0〉. As was argued in [18], the mean field theory gives
correct prediction regarding 〈l0〉 for d = 3 systems even with short-ranged intermolecular
interactions. From equation (4.1), one concludes that for � = γL, where γ ∈ (0, 1), 〈l�〉
diverges as

√
1−γ 2

√
πσ

√
L, while in the case � = L − δ�, δ� being small as compared to L, but

much larger than ξ2, one obtains 〈l�〉 ∼
√

2
πσ

(δ�)1/2 for large L.

The moment
〈
l2
�

〉
can be computed for large L analogously to 〈l�〉. However, one may also

derive this quantity without reference to any asymptotic expansion and for arbitrary values of
L. This calculation is sketched in the appendix. It appears that for L/ξ2 
 1,

〈
l2
�

〉
obeys the

following scaling:〈
l2
�

〉
L

−→ 1

2σ

(
1 − �2

L2

)
. (4.2)

It follows that the interfacial roughness
〈
l2
�

〉 − 〈l�〉2 diverges as L
σ

(
1
2 − 1

π

)(
1 − �2

L2

)
, which

is again the same formula, as one obtains by considering a homogeneous substrate with a
fluctuating interface pinned at the boundaries.

5. Interfacial correlation function

The SOS model discussed in the present paper gives analytic insight into the structure of the
correlation function in the limit L/ξ2 
 1. Let us recall that in the present analysis T = TW1,
which means that type 1 substrate is wetted by the liquid. This implies that in the homogeneous
case the corresponding correlation length ξ1 is infinite. On the other hand, the fluctuations are
suppressed by the presence of the outer, semi-infinite non-wet substrate parts. Whether for
finite L there exists a correlation length ξ(L, �1, �2) describing the magnitude of correlations
between interfacial fluctuations above points �1 and �2 is not obvious at all. Below we show
that no such quantity arises in the regime L/ξ2 
 1 and that the correlation function diverges
linearly for L/ξ2 → ∞ provided the points �1, �2 are chosen so that (L − �i) 
 ξ2 for
i = 1, 2.

The two-point interfacial correlation function G(�1, �2, L) is defined by

G(�1, �2, L) = 〈
l�1 l�2

〉− 〈
l�1

〉〈
l�2

〉
, (5.1)

where
〈
l�1 l�2

〉 = ∫
dl�1 dl�2 l�1 l�2P�1,�2

(
l�1 , l�2

)
.

To evaluate
〈
l�1 l�2

〉
we follow the scheme devised in the preceding sections and replace

the error functions in P�1,�2

(
l�1 , l�2

)
with their asymptotic at infinity. Integration over one of

the variables is than straightforward, while the second integral is expressed in terms of the
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Figure 5. The correlation function G plotted as a function of �2 at fixed �1 = 0 and L/ξ2 = 100
in the range �2 ∈ (0, L).

hypergeometric function 2F1 [24] leading to

〈y1y2〉 = 1

M

4

π3/2

1√

�̃

[
λ1+λ2−
�̃2

2
(
λ2

1+ + 
�̃
)(

λ2
2− + 
�̃

)
+

λ3
1+λ

3
2−(

λ2
1+ + λ2

2− + 
�̃
)2 2F1

(
1

2
, 2,

3

2
,− λ2

1+λ
2
2−


�̃
(
λ2

1+ + λ2
2− + 
�̃

))] , (5.2)

where

M = eλ2
0 Erfc(λ0) +

2√
π

λ0 − 2λ2
0 eλ2

0 Erfc(λ0). (5.3)

An example of the G plot is provided in figure 5.
To obtain a more transparent expression for the correlation function G(�1, �2, L) we

focus on the case where the points �1, �2 are separated by a distance much shorter than L and
L − �2, i.e., we assume 
�̃ � λ2

1+ and 
�̃ � λ2
2−. Using the asymptotic properties of the

hypergeomertic function 2F1:

2F1

(
1

2
, 2,

3

2
,−x

)
= π

4

1√
π

− 1

3

1

x2
+ O

(
1

x3

)
, (5.4)

we obtain the asymptotic behaviour of G(�1, �2, L) in the form

G(�1, �2, L)

L
−→ 1

σ

1

2

(
1 +

�1

L

)(
1 − �2

L

)
− 1

π

√
1 − �2

1

L2

√
1 − �2

2

L2

 , (5.5)

which shows that under the restrictions imposed on the parameters �1, �2 the decay of
correlations is in fact linear in 
�̃, and that for fixed �1, �2 the correlations grow linearly
as a function of L. For �1 = �2, one recovers the local roughness derived in section 4,
equation (4.2). The applicability of equation (5.5) is strongly limited by the aforementioned
restrictions. On the other hand, also in formula (5.2) one does not observe the presence
of terms of type e−
�/ξ , which typically describe the decay of correlations in non-critical
systems.

6. Summary

In this paper, we analysed the properties of a two-dimensional model of adsorption at a
substrate equipped with a single chemical impurity. We were concerned with the case, when
the inhomogeneity is wetted by the liquid phase of the fluid to which the substrate is exposed,
while the rest of the substrate remains non-wet. The behaviour of mean local interfacial
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position, interfacial roughness and correlation function was investigated in the asymptotic
regime of the large inhomogeneity’s width 2L, for which the system becomes critical and
is fluctuation dominated. The type of divergence of these quantities in the considered limit
was determined depending on the distance from the inhomogeneity’s boundary. The results
were obtained by directly calculating the one- and two-point probability distribution functions
P�(l�) and P�1,�2

(
l�1 , l�2

)
, and then investigating the asymptotic properties of their moments.

Our conclusions are as follows.

• Both mean interfacial position 〈l�〉 and roughness
(〈
l2
�

〉 − 〈l�〉2
)1/2

diverge in the limit
L → ∞ at any point � which is separated from the inhomogeneity’s boundary by
a distance much larger than the parallel correlation length ξ2 corresponding to the
homogeneous substrate of type 2. For � = γL, where γ ∈ (0, 1), the quantity 〈l�〉
diverges as

√
1 − γ 2

√
L, while for � = L − δ�, δ� being small as compared to L, but

much larger than ξ2, one obtains 〈l�〉 ∼ (δ�)1/2. The mean local height and roughness
close to the chemical structure’s boundaries remain bounded even for infinite L, as was
already noted in [17]. The character of the divergence of the local roughness is the same
as for 〈l�〉.

• The limiting forms of the mean interfacial shape as well as interfacial roughness are
independent of the properties of substrate 2 and are the same as those obtained for a
system composed of an interface fluctuating above a homogeneous substrate of fixed
length 2L provided the interface endpoints at −L and L are pinned at a finite distance
from the substrate. This means that from the point of view of the system’s large-scale
behaviour in the region above the chemical structure, the presence of the non-wetted parts
of the substrate can be exactly imitated by a system with a homogeneous substrate upon
binding the interface at −L and L.

• The obtained profiles of 〈l�〉 and
(〈
l2
�

〉 − 〈l�〉2
)1/2

describe ellipses, whose x-axis length
equals 2L, and y-axis lengths are of the order

√
L and are inversely proportional to

√
σ .

• We investigated the structure of the interfacial correlation function G(�1, �2, L) in the
asymptotic limit of large L and found no indication of the presence of terms of type
e−(�2−�1)/ξ (�2 > �1), which often describe decay of fluctuations in non-critical systems.
The correlation function’s amplitude grows linearly with L, and the correlations decay
linearly with �2 − �1 under the restrictions that �2 − �1 � L and �2 − �1 � L − �2.
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Appendix

In this appendix, we discuss the expression for the moment
〈
l2
�

〉
of the probability distribution

function P�(y) given by equation (3.7). The quantity
〈
l2
�

〉
is calculated for arbitrary L and

� ∈ (−L,L) by noting that P�(y) is invariant with respect to the inversion y −→ −y. This
allows us to write

〈
l2
�

〉
in the following form:

〈y2〉 =
∫ ∞

−∞
dy y2

[
Erfc(λ0) +

2√
π

λ0 e−λ2
0 − 2λ2

0 Erfc(λ0)

]−1

×
[

e−4y Erfc

(
− y

λ+
+ λ+

)
Erfc

(
− y

λ−
+ λ−

)
+ Erfc

(
− y

λ+
+ λ+

)
Erfc

(
y

λ−
+ λ−

)]
.

(A.1)
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The above integrals are performed by substituting U(y) = Erfc
(− y

λ+
+ λ+

)
, V ′

1(y) =
y2 e−4y Erfc

(− y

λ−
+ λ−

)
, V ′

2(y) = y2 Erfc
(

y

λ−
+ λ−

)
and integrating by parts. This way

one arrives at an integral that no longer involves the products of the error functions. In the
next step, we insert the integral representation (equation (3.8)) of the error function into the
obtained formula and integrate over y and the remaining variable. This yields the following
expression:

〈y2〉 = 2√
π

[
Erfc(λ0) +

2√
π

λ0 e−λ2
0 − 2λ2

0 Erfc(λ0)

]−1

×
[(

1

12
λ6

0 +
1

12
λ4

0 +
1

8
λ2

0 + λ2
0�̃

2

)
e−λ2

0

λ0

+
√

π

(
− 1

12
λ6

0 − 1

8
λ4

0 − λ2
0�̃

2 − 1

2
�̃2 +

1

16

)
Erfc(λ0)

]
, (A.2)

from which it follows that 〈y2〉 is quadratic in �̃ = �/ξ2 at arbitrary L.
Utilizing the asymptotic expansion Erfc(x) = 1√

πx
e−x2(

1 − 1
2x2 + 3

4x4 − 15
8x6 + O

(
1
x8

))
,

one obtains the following formula valid for L/ξ2 
 1:〈
l2
�

〉 = L

2σ

(
1 − �2

L2

)
+ ξ2⊥

(
1 +

�2

L2

)
+ O

(
ξ2

L

)
, (A.3)

which up to the leading terms is equivalent to equation (4.2).
One may also explore the asymptotic regime of equation (A.2) corresponding to L/ξ2 � 1.

For this case we obtain〈
l2
�

〉 = 1

2
ξ2⊥

[
1 + 2λ2

0 − 8

3
√

π
λ3

0 − 8

(
1

4
λ4

0 + �̃2 + O
(
λ5

0

))]
. (A.4)

For L/ξ2 = 0, the result for the homogeneous substrate type 2 is recovered. One observes
that the two leading L-dependent corrections are not influenced by the value of �.

The method we used to obtain
〈
l2
�

〉
for arbitrary L may also be applied to compute higher

even moments of the distribution P�(l�). However, it fails in the case of the odd moments,
which we were able to obtain only in the asymptotic regime L/ξ2 
 1, as described in the
main text.
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